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Characteristics ofGases 

• There are three phases for all substances: solid, liquid 
and gases. 

• 	Gases are highly compressible and occupy the full 
volume of their containers. 

• When a gas is subjected to pressure, its volume 
decreases. 

• 	Gases always form homogeneous mixtures with other 
gases. 

• 	Gases only occupy about 0.1 % of the volume of their 
containers. 
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Pressure 
Atmospheric Pressure and the Barometer 
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Pressure 
Atmospheric Pressure and the Barometer 
• Pressure is the force acting on an object per unit area: 

F p= ­
A 

• 	Gravity exerts a force on the earth's atmosphere 

• A column of air 1 m2 in cross section exerts a force of 
105 N. 

• The pressure of a 1 m2 column of air is 100 kPa. 
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Pressure 

Atmospheric Pressure and the Barometer 
• SI Units: 1 N =1 kg.m/s2; 1 Pa =1 N/m2• 

• 	 Atmospheric pressure is measured with a barometer. 

• 	If a tube is inserted into a container of mercury open 
to the atmosphere, the mercury will rise 760 mm up 
the tube. 

• 	 Standard atmospheric pressure is the pressure 
required to support 760 mm of Hg in a column. 

• Units: 1 atm = 760 mmHg = 760 torr = 1.01325 x 105 

Pa =101.325 kPa. 

Copyril!:hI1999, PRENTICE HALL Chapler 10 

1 



Pressure 
Atmospheric Pressure and the Barometer 
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Pressure 
Pressures of Enclosed Gases and Manometers 
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Pressure 
Pressures of Enclosed Gases and Manometers 
• The pressures of gases not open to the atmosphere are 

measured in manometers. 

• A manometer consists of a bulb of gas attached to a V­
tube containing Hg. 

• 	If the V-tube is closed, then the pressure of the gas is 
the difference in height of the liquid (usually Hg). 

• 	 If the V-tube is open to the atmosphere, a correction 
term needs to be added: 
-	 If P ga• < Palm then P g•• + Ph2 =P alm' 

-	 If P ga• > Palm then P ga. = Palm + Ph2 • 
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The Gas Laws 
The Pressures-Volume Relationship: Boyle's 

Law 
• Weather balloons are used as a practical consequence 

to the relationship between pressure and volume of a 
gas. 

• 	As the weather balloon ascends, the volume decreases. 

• 	As the weather balloon gets further from the earth's 
surface, the atmospheric pressure decreases. 

• 	 Boyle' s Law: the volume of a fixed quantity of gas is 
inversely proportional to its pressure. 

COP~·riKbt 1999, PRE"iIC[ HALL Chapter 10 

2 

http:presst.re


The Gas Laws 
The Pressures-Volume Relationship: Boyle's 

Law 
• 	 Mathematically: 

1
V = constant x ­ PV =constant 

P 
• 	 A plot of V versus P is a hyperbola. 

• 	 Similarly, a plot of V versus lIP must be a straight 
line passing through the origin. 
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The Gas Laws 
The Temperature-Volume Relationship: 

Charles's Law 
• We know that hot air balloons expand when they are 

heated. 
• 	Charles's Law: the volume of a fixed quantity of gas 

at constant pressure increases as the temperature 
increases. 

• Mathematically: 

V
V =constant x T - =constant 

T 
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The Gas Laws 
The Pressures-Volume Relationship: Boyle's 

Law 
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The Gas Laws 
The Temperature-Volume Relationship: 

Charles's Law 
• A plot of V versus T is a straight line. 

• When T is measured in °C, the intercept on the 
temperature axis is -273.15°C. 

• We define absolute zero, 0 K =-273.15°C. 

• Note the value of the constant reflects the 
assumptions: amount of gas and pressure. 
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The Gas Laws 
The Temperature-Volume Relationship: 

Charles's Law 
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The Gas Laws 
The Quantity-Volume Relationship: Avogadro's 

Law 
• Avogadro's Hypothesis: equal volumes of gas at the 

same temperature and pressure will contain the same 
number of molecules. 

• Avogadro's Law: the volume of gas at a given 
temperature and pressure is directly proportional to 
the number of moles of gas. 
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The Gas Laws 
The Quantity-Volume Relationship: Avogadro's 

Law 
• 	Gay-Lussac's Law of combining volumes: at a given 

temperature and pressure, the volumes of gases which 
react are ratios ofsmall whole numbers. 

Two volumes One volume Two volumes 
hydrogen + oxygen water vapor 

Observation: ---. 

Explanation: I H H 
+

H H I S ~I ;t ;, 
Equation: 2H,(g) + °2(g) --. 2H2O(g) 
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The Gas Laws 
The Quantity-Volume Relationship: Avogadro's 

Law 
• 	 Mathematically: 

v =constant x n. 
• 	 We can show that 22.4 L of any gas at ooe contain 

6.02 x 1023 gas molecules. 
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The Ideal Gas Equation 
• 	 Summarizing the Gas Laws 

Boyle: (constant n, T) 

Charles: V cc T (constant n, P) 


Avogadro: V cc n (constantP, T). 


• 	Combined: 

Vex: nT . ­
p 

• 	 Ideal gas equation: (nT) 
V=R p 
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The Ideal Gas Equation 
Relationship Between the Ideal-Gas Equation 

and the Gas Laws 
• 	 IfPV =nRT and nand T are constant, then PV= 

constant and we have Boyle's law. 

• 	Other laws can be generated similarly. 

• 	 In general, if we have a gas under two sets of 
conditions, then 

PIVI _ P2V2 

nlTI n2T2 
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The Ideal Gas Equation 
• 	 Ideal gas equation: 

PV=nRT. 

• 	 R =gas constant =0.08206 Vatm/mol-K. 

• 	 We define STP (standard temperature and pressure) 
=O°C, 273.15 K, 1 atm. 

• 	 Volume of 1 mol of gas at STP is 22.4 L. 
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Further Applications ofThe Ideal-Gas 
Equation 
Gas Densities and Molar Mass 
• 	 Density has units of mass over volume. 
• 	 Rearranging the ideal-gas equation with Mas molar 

mass we get 
n P 

= 
V RT 

nM -d-PM 
V RT 
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Further Applications ofThe Ideal-Gas 
Equation 
Gas Densities and Molar Mass 
• 	 The molar mass of a gas can be determined as follows: 

M=dRT 
P 

Volumes of Gases in Chemical Reactions 
• 	 The ideal-gas equation relates P, V, and T to number 

of moles of gas. 

• 	 The n can then be used in stoichiometric calculations. 
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Gas Mixtures and Partial Pressures 
Partial Pressures and Mole Fractions 
• 	 Let n l be the num ber of moles of gas i exerting a 

partial pressure Pi' then 

P;=XjP" 


where Xi is the mole fraction (nln,). 


Collecting Gases over Water 
• 	 It is common to synthesize gases and collect them by 

displacing a volume of water. 

• To calculate the amount of gas produced, we need to 
correct for the partial pressure of the water: 

Plota) = Pgas + Pwater 
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Gas Mixtures and Partial Pressures 
• Since gas molecules are so far apart, we can assume 

they behave independently. 

• Dalton's Law: in a gas mixture the total pressure is 
given by the sum of partial pressures of each 
component: 

PI =PI + P2 + P3 + ... 
• Each gas obeys the ideal gas equation: 

Pi :n{R:) 

• Combining e~uations: {RT)

PI = ~nl + n2 + n3 + . . . - ­
V 
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Gas Mixtures and Partial Pressures 
Collecting Gases over Water 

Gas volume 
Gas collection measurement 
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Kinetic-Molecular Theory 
• 	 Theory developed to explain gas behavior. 

• 	 Theory of moving molecules. 

• 	 Assumptions: 
- Gases consist of a large number of molecules in constant 

random motion. 

- Volume of individual molecules negligible compared to 
volume of container. 

- Intermolecular forces (forces between gas molecules) 
negligible. 

- Energy can be transferred between molecules, but total 
kinetic energy is constant at constant temperature. 

-	 Average kinetic energy of molecules is proportional to 
temperature. 
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Kinetic-Molecular Theory 

• 	 Magnitude of pressure given by how often and how 
hard the molecules strike. 

• 	 Gas molecules have an average kinetic energy. 

• 	 Each molecule has a different energy. 

• 	 There is a spread of individual energies of gas 
molecules in any sam pie of gas. 

• As the temperature increases, the average kinetic 
energy of the gas molecules increases. 
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Kinetic-Molecular Theory 


• 	 Kinetic molecular theory 
gives us an understanding of 
pressure and temperature 
on the molecular level. 

• Pressure of a gas results 
from the number of 
collisions per unit time on 
the walls of container. 
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Kinetic-Molecular Theory 
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Kinetic-Molecular Theory 	 Kinetic-Molecular Theory 

Application to the Gas Laws • 	 As kinetic energy increases, the velocity of the gas 
molecules increases. 	 • As volume increases at constant temperature, the 


average kinetic of the gas remains constant. 
• 	 Root mean square speed, u, is the speed of a gas 
Therefore, u is constant. However, volume increases molecule having average kinetic energy. 
so the gas molecules have to travel further to bit the 

• 	 Average kinetic energy, E, is related to root mean walls of the container. Therefore, pressure decreases. 
square speed: 

• 	If temperature increases at constant volume, the 
E =Yzmu2 

average kinetic energy of the gas molecules increases. 
Therefore, there are more collisions with the container 
walls and the pressure increases. 
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Molecular Effusion and Diffusion 	 Molecular Effusion and Diffusion 
• As kinetic energy increases, the velocity of the gas 

molecules increases. s 
", O?• 	 Average kinetic energy of a gas is related to its mass: !l 

3'g
• 	 E =Yzmu2• al~ 

~ 'g• Consider two gases at the same temperature: the 0-5 	 He 

h 	 Hz lighter gas has a higher rms than the heavier gas. 
"'"./

l:'o• 	 Mathematically: "- ­ '-.,..''''- '­
--- 1 I .~---....,--- r3RT 	 5 x' 102 lO x 10' 15x 102 20x 102 25x 102 30 x 10' 35x 102 

Molecular speed (m/s) U= \ I M 
• 	The lower the molar mass, M, the higher the rms for 

that gas at a constant temperature. 
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Molecular Effusion and Diffusion 
Graham's Law of Effusion 
o 	 As kinetic energy increases, the velocity of the gas 

molecules increases. 


Effusion is the escape of a gas through a tiny hole (a 

balloon will deflate over time due to effusion). 


o 	 The rate of effusion can be quantified. 

o 	 Consider two gases with molar masses ~ and ~, the 
relative rate of effusion is giv,en by 

"1 = I~ 
T2 \I ~ 

CoPyrlMht 1999, PR['1TICE HALL Chapter 16 	 3. 

Molecular Effusion and Diffusion 
Graham's Law of Effusion 
o 	 Only those molecules that hit the small hole will 

escape through it. 

o 	 Therefore, the higher the rms the more likelihood of a 
gas molecule hitting the hole. 

o 	 We can show 
'3RT--­

"1=Ul= , ~ n 
T2 U2 ~ 3RT~ 'v ~ 

('opHlllht 1999. PREYTK[ HALL Chllplcr 16 	 36 

Molecular Effusion and Diffusion 
Graham's Law of Effusion 
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Molecular Effusion and Diffusion 
Diffusion and Mean Free Path 
o 	 Diffusion of a gas is the spread of the gas through 

space. 

o 	 Diffusion is faster for light gas molecules. 

o 	 Diffusion is significantly slower than rms speed 
(consider someone opening a perfume bottle: it takes 
while to detect the odor but rms speed at 25°C is 
about 1150 mi/hr). 

Diffusion is slowed by gas molecules colliding with 
each other. 

o Average distance of a gas molecule between collisions 
is called mean free path. 
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Molecular Effusion and Diffusion 
Diffusion and Mean Free Path 
• At sea level, mean free path is about 6 x 10-6 cm. 
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Real Gases: Deviations from Ideal 
Behavior 
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Real Gases: Deviations from Ideal 
Behavior 
• From the ideal gas equation, we have 

PV 
-- =n
RT 

• For 1 mol of gas, PVIRT =1 for all pressures. 

• In a real gas, PVIRTvaries from 1 significantly. 

• The higher the pressure the more the deviation from 
ideal behavior. 

CClp~"flahl 1999, PREl''T1CE HA LL Chapter !O J9 

Real Gases: Deviations from Ideal 
Behavior 
• From the ideal gas equation, we have 

PV 
-- =n 
RT 

• For 1 mol of gas, PVIRT =1 for all temperatures. 

• As temperature increases, the gases behave more 
ideally. 


The assumptions in kinetic molecular theory show 

where ideal gas behavior breaks down: 

- the molecules of a gas have finite volume; 


- molecules of a gas do attract each other. 
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Real Gases: Deviations from Ideal Real Gases: Deviations/rom Ideal 
Be· Behavior 

3, / 200K 

• As the pressure on a gas increases, the molecules are 
I ..· 500 K 

/ / forced closer together. 
/ / 

/ 
/ 

/ 
/ • As the molecules get closer together, the volume of the 

container gets smaller. PV 1000K/'.-'/ 
/ 

//.... RT • The smaller the container, the more space the gas 
1 K" -~-..--."'1-/ ----- ----- -- -- - Ideal gas ----- molecules begin to occupy. 

'-. /,/' • Therefore, the higher the pressure, the less the gas 
resembles an ideal gas. 

0' As the gas molecules get closer together, the smaller 300 600 900 

P(atm) the intermolecular distance. 
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Real Gases: Deviations/rom Ideal Real Gases: Deviations/rom Ideal 
Behavior Behavior 

.---- ..--.... • The smaller the distance between gas molecules, the -~ --..... 
more likely attractive forces will develop between the 

, 1 --1, molecules.'I:~'-:·~ '1 
vfl' \,t 01' ! • Therefore, the less the gas resembles and ideal gas . f ".,__.m~ '>'.'; 0 0 0 0 . • As temperature increases, the gas molecules move

'j 0 

i 0 faster and further apart.

0 0 o £'v ~. 


• Also, higher temperatures mean more energy0 o 0 0"" ()0 o available to break intermolecular forces. o 0 0
0 0 00 o 0 0 • Therefore, the higher the temperature, the more ideal 

Q ' 0: o .,>" ' ... 0 the gas. 
(a) (b)'/ 0 0, ....".' 0 
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Real Gases: Deviations from Ideal 
Behavior 
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Real Gases: Deviationsfrom Ideal 
Behavior 
The van der Waals Equation 
• To understand the effect of intermolecular forces on 

pressure consider a molecule that is about to strike the 
wall of the container: the striking molecule is 
attracted by neighboring molecules. Therefore, the 
impact on the wall is lessened. 
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Real Gases: Deviationsfrom Ideal 
Behavior 
The van der Waals Equation 
• We add two terms to the ideal gas equation one to 

correct for volume of molecules and the other to 
correct for intermolecular attractions 

• The 	correction terms generate the van der Waals 
equation: 

_ nRT n2aP 
V -nb V 2 


where a and b are empirical constants. 
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Gases 

End ofChapter 10 
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