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Characteristics of Gases

e There are three phases for all substances: solid, liquid
and gases.

» Gases are highly compressible and occupy the full
volume of their containers.

* When a gas is subjected to pressure, its volume
decreases.

» Gases always form homogeneous mixtures with other
gases.

e Gases only occupy about 0.1 % of the volume of their
containers.
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Pressure

Atmospheric Pressure and the Barometer
* Pressure is the force acting on an object per unit area:

p-t
A

* Gravity exerts a force on the earth’s atmosphere

* A column of air 1 m? in cross section exerts a force of
105 N.

* The pressure of a 1 m? column of air is 100 kPa.
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Pressure

Atmospheric Pressure and the Barometer
¢ SI Units: 1 N=1 kg.m/s?; 1 Pa=1 N/m?
e Atmospheric pressure is measured with a barometer.

* If a tube is inserted into a container of mercury open
to the atmosphere, the mercury will rise 760 mm up
the tube.

e Standard atmospheric pressure is the pressure
required to support 760 mm of Hg in a column.

¢ Units: 1 atm = 760 mmHg = 760 torr = 1.01325 x 105
Pa = 101.325 kPa.
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Pressure

Pressures of Enclosed Gases and Manometers

* The pressures of gases not open to the atmosphere are
measured in manometers.

* A manometer consists of a bulb of gas attached to a U-
tube containing Hg.

 If the U-tube is closed, then the pressure of the gas is
the difference in height of the liquid (usually Hg).

« If the U-tube is open to the atmosphere, a correction
term needs to be added:
- If P, <P,, then P, + P, =P,

atm*
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- lngas > Patm then Pgas = Patm + Ph2'
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The Gas Laws

The Pressures-Volume Relationship: Boyle’s
Law

* Weather balloons are used as a practical consequence
to the relationship between pressure and volume of a
gas.

* As the weather balloon ascends, the volume decreases.

* As the weather balloon gets further from the earth’s
surface, the atmospheric pressure decreases.

e Boyle’s Law: the volume of a fixed quantity of gas is
inversely proportional to its pressure.
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The Gas Laws

The Pressures-Volume Relationship: Boyle’s
Law
¢ Mathematically:

V = constantx }1; PV =constant

» A plot of V versus P is a hyperbola.

« Similarly, a plot of V versus 1/P must be a straight
line passing through the origin.
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The Gas Laws

The Pressures-Volume Relationship: Boyle’s
Law
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The Gas Laws

The Temperature-Volume Relationship:
Charles’s Law

» We know that hot air balloons expand when they are
heated.

» Charles’s Law: the volume of a fixed quantity of gas
at constant pressure increases as the temperature
increases.

¢ Mathematically:

V
V =constantx T T = constant
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The Gas Laws

The Temperature-Volume Relationship:
Charles’s Law
* A plot of V versus T is a straight line.

¢ When T is measured in °C, the intercept on the
temperature axis is -273.15°C.

* We define absolute zero, 0 K =-273.15°C.

¢ Note the value of the constant reflects the
assumptions: amount of gas and pressure.
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The Gas Laws

The Temperature-Volume Relationship:
Charles’s Law

The Gas Laws

The Quantity-Volume Relationship: Avogadro’s
Law
* Gay-Lussac’s Law of combining volumes: at a given

temperature and pressure, the volumes of gases which
react are ratios of small whole numbers.
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The Gas Laws

The Quantity-Volume Relationship: Avogadro’s
Law

+ Avogadro’s Hypothesis: equal volumes of gas at the
same temperature and pressure will contain the same
number of molecules.

» Avogadro’s Law: the volume of gas at a given
temperature and pressure is directly proportional to
the number of moles of gas.
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— Two volumes One volume Two volumes
Observation: hydrogen * oxygen water vapor
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Equation: 2H,(g) + O,(g) —> 2H,0(g)
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The Gas Laws

The Quantity-Volume Relationship: Avogadro’s
Law

* Mathematically:
V = constant x n.

* We can show that 22.4 L of any gas at 0°C contain
6.02 x 10% gas molecules.
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The Ideal Gas Equation

* Summarizing the Gas Laws
Boyle: (constant n, T)
Charles: V o T (constant n, P)
Avogadro: V «n (constant P, T).

Vocg—]:
P

» Combined:
* Ideal gas equation:

o)
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The Ideal Gas Equation

+ Ideal gas equation:
PV =nRT.
* R =gas constant = 0.08206 Leatm/mol-K.

* We define STP (standard temperature and pressure)
=0°C, 273.15 K, 1 atm.

* Volume of 1 mol of gas at STP is 22.4 L.
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The Ideal Gas Equation

Relationship Between the Ideal-Gas Equation
and the Gas Laws

o If PV =nRT and n and T are constant, then PV =
constant and we have Boyle’s law.

e Other laws can be generated similarly.
* In general, if we have a gas under two sets of

conditions, then
PV _ P
mTy nyTp
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Further Applications of The Ideal-Gas
Equation

Gas Densities and Molar Mass

* Density has units of mass over volume,

+ Rearranging the ideal-gas equation with A7as molar
mass we get

n_ P
vV RT
nM . PM
v RT
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Further Applications of The Ideal-Gas
Equation

Gas Densities and Molar Mass

» The molar mass of a gas can be determined as follows:

Volumes of Gases in Chemical Reactions

» The ideal-gas equation relates P, V, and T to number
of moles of gas.
* The n can then be used in stoichiometric calculations.
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Gas Mixtures and Partial Pressures
 Since gas molecules are so far apart, we can assume
they behave independently.

* Dalton’s Law: in a gas mixture the total pressure is
given by the sum of partial pressures of each
component:

P=P +P,+P,+...

* Each gas obeys the ideal gas equation:

RT
(T
V
¢ Combining equations: RT
Py =2n1 +ny +n3 +('—;)

Gas Mixtures and Partial Pressures
Partial Pressures and Mole Fractions
 Let n, be the number of moles of gas / exerting a
partial pressure P, then
P,=XP,
where X is the mole fraction (n/n,).
Collecting Gases over Water

« It is common to synthesize gases and collect them by
displacing a volume of water.

* To calculate the amount of gas produced, we need to
correct for the partial pressure of the water:

Py = Py + P

total water
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Gas Mixtures and Partial Pressures
Collecting Gases over Water

Ges volume
Gas collection measurement
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Kinetic-Molecular Theory

* Theory developed to explain gas behavior.
* Theory of moving molecules.
* Assumptions:
— Gases consist of a large number of molecules in constant
random motion.
— Volume of individual molecules negligible compared to
volume of container.
— Intermolecular forces (forces between gas molecules)
negligible.
— Energy can be transferred between molecules, but total
kinetic energy is constant at constant temperature.
— Average kinetic energy of molecules is proportional to
temperature.
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Kinetic-Molecular Theory

* Kinetic molecular theory
gives us an understanding of
pressure and temperature
on the molecular level.

* Pressure of a gas results
from the number of
collisions per unit time on
the walls of container.
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Kinetic-Molecular Theory

¢ Magnitude of pressure given by how often and how
hard the molecules strike.

* Gas molecules have an average kinetic energy.
e Each molecule has a different energy.

* There is a spread of individual energies of gas
molecules in any sample of gas.

* As the temperature increases, the average kinetic
energy of the gas molecules increases.
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Kinetic-Molecular Theory
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Kinetic-Molecular Theory

e As kinetic energy increases, the velocity of the gas
molecules increases.

* Root mean square speed, «, is the speed of a gas
molecule having average kinetic energy.

» Average Kinetic energy, &, is related to root mean
square speed:

€ = Yamu?
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Kinetic-Molecular Theory

Application to the Gas Laws

* As volume increases at constant temperature, the
average kinetic of the gas remains constant.
Therefore, u is constant. However, volume increases
so the gas molecules have to travel further to hit the
walls of the container. Therefore, pressure decreases.

+ If temperature increases at constant volume, the
average kinetic energy of the gas molecules increases.
Therefore, there are more collisions with the container
walls and the pressure increases.
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Molecular Effusion and Diffusion

» As kinetic energy increases, the velocity of the gas
molecules increases.

* Average Kinetic energy of a gas is related to its mass:
o £=Yimul,
* Consider two gases at the same temperature: the
lighter gas has a higher rms than the heavier gas.
¢ Mathematically: -
3RT
« The lower the molar mass, A4 the higher the rms for
that gas at a constant temperature.
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Molecular Effusion and Diffusion
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Molecular Effusion and Diffusion

Graham’s Law of Effusion

e As Kkinetic energy increases, the velocity of the gas
molecules increases.

« Effusion is the escape of a gas through a tiny hole (a
balloon will deflate over time due to effusion).

¢ The rate of effusion can be quantified.

+ Consider two gases with molar masses A4, and A4, the
relative rate of effusion is givrgl_py

rl—f

o \M
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Molecular Effusion and Diffusion

Graham’s Law of Effusion
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Molecular Effusion and Diffusion

Graham’s Law of Effusion

¢ Only those molecules that hit the small hole will
escape through it.

e Therefore, the higher the rms the more likelihood of a
gas molecule hitting the hole.

* We can show

n_"“m
r uz

\3RT/% \
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Molecular Effusion and Diffusion

Diffusion and Mean Free Path

« Diffusion of a gas is the spread of the gas through
space.

* Diffusion is faster for light gas molecules.

 Diffusion is significantly slower than rms speed
(consider someone opening a perfume bottle: it takes
while to detect the odor but rms speed at 25°C is
about 1150 mi/hr).

< Diffusion is slowed by gas molecules colliding with
each other.

* Average distance of a gas molecule between collisions
is called mean free path.
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Molecular Effusion and Diffusion

Diffusion and Mean Free Path
At sea level, mean free path is about 6 x 10 cm.
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Real Gases: Deviations from Ideal
Behavior

* From the ideal gas equation, we have

RT
* For 1 mol of gas, PV/RT = 1 for all pressures.
* In a real gas, PV/RT varies from 1 significantly.

¢ The higher the pressure the more the deviation from
ideal behavior.
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Real Gases: Deviations from Ideal

Behavior
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Real Gases: Deviations from Ideal
Behavior

* From the ideal gas equation, we have

—=n
RT
e For 1 mol of gas, PV/RT = 1 for all temperatures.
e As temperature increases, the gases behave more
ideally.
* The assumptions in kinetic molecular theory show
where ideal gas behavior breaks down:
— the molecules of a gas have finite volume;
— molecules of a gas do attract each other.
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Real Gases: Deviations from Ideal
Be®
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Real Gases: Deviations from Ideal

Behavior

* As the pressure on a gas increases, the molecules are
forced closer together.

* As the molecules get closer together, the volume of the
container gets smaller.

e The smaller the container, the more space the gas
molecules begin to occupy.

* Therefore, the higher the pressure, the less the gas
resembles an ideal gas.

¢ As the gas molecules get closer together, the smaller
the intermolecular distance.
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Real Gases: Deviations from Ideal
Behavior

{a)
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Real Gases: Deviations from Ideal

Behavior

* The smaller the distance between gas molecules, the
more likely attractive forces will develop between the
molecules.

* Therefore, the less the gas resembles and ideal gas.

* As temperature increases, the gas molecules move
faster and further apart.

+ Also, higher temperatures mean more energy
available to break intermolecular forces.

¢ Therefore, the higher the temperature, the more ideal
the gas.
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Real Gases: Deviations from Ideal
Behavior
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Real Gases: Deviations from Ideal
Behavior

The van der Waals Equation

* We add two terms to the ideal gas equation one to
correct for volume of molecules and the other to
correct for intermolecular attractions

¢ The correction terms generate the van der Waals
equation:

p. M R4
V —nb V2

where @ and b are empirical constants.
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Real Gases: Deviations from Ildeal
Behavior

The van der Waals Equation

* To understand the effect of intermolecular forces on
pressure consider a molecule that is about to strike the
wall of the container: the striking molecule is
attracted by neighboring molecules. Therefore, the
impact on the wall is lessened.
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Gases

End of Chapter 10
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